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Enhanced Hexagonal-Based Search Using
Direction-Oriented

Inner Search for Motion Estimation
Bei-Ji Zou, Cao Shi, Can-Hui Xu, and Shu Chen

Abstract—The newly developed enhanced hexagonal-based
search using point-oriented inner search (EHS-POIS) enormously
speeds up hexagon-based search (HS). From a different per-
spective, an inherent correlation between distortion and spatial
direction through statistical analysis is found. Based on the
observed distortion distribution, a novel enhanced hexagonal-
based search with direction-oriented inner search (EHS-DIOS)
is proposed to avoid real distortion calculation and thus reduce
high computation. Experimental results show that, the proposed
algorithm is faster than EHS-POIS by achieving two times
improvement in terms of inner search speed, and as compared
with previous works, it makes a better tradeoff between speed
and decoded image quality.

Index Terms—Directional distortion distribution, hexagon
search, inner search, motion estimation.

I. Introduction

BLOCK matching based motion estimation plays a vital
role in video compression, image processing, computer

vision, etc. With the aim to find the best matched block in
the reference frame, it is natural to utilize full search (FS)
comparing all candidate blocks within the search window,
which undoubtedly finds the global optimal matched block at
cost of high computational complexity. To speed up searching
process, many efficient heuristic approaches were proposed
successively, such as three-step search (TSS) [1], new three-
step search (NTSS) [2], two-dimensional logarithmic search
[3], four-step search (FSS) [4] and block-based gradient
descent search (BBGDS) [5], etc.

It is well known that the variation of motion vector in real-
world image sequences is gentle, smooth, and slow [2], [4].
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Experiments [2] also show that the best matched position is
always center-biased. This conclusion is well made use of by
NTSS, FSS, BBGDS, diamond search (DS) [6], [7], cross-
diamond search [8]–[17], hexagon-based search (HS) [9], etc.,
which are state of the art in motion estimation. In TSS, NTSS,
FSS, BBGDS, square-shaped search patterns of different sizes
are adopted, while DS employs a diamond-shaped search
pattern. To choose different search pattern can result in better
performance like diamond-shaped DS outperforming some
square-shaped search patterns [1]–[5]. Therefore, Zhu et al.
further developed a hexagon-shaped search method HS [9],
which uses a more circle-approximated search pattern and is
more computationally efficient than DS.

Both HS and DS include two search patterns: 1) a coarse
search using a relatively large search step to find probable
area of global minimal block matching error (BME), and 2)
an inner search exploring the small area within the result of
the coarse search. Much attention has been given to speed up
the coarse search by reducing the number of search points.
Actually, the inner search accounts for a non-negligible
part of search time. Fast inner search is highly desirable
to further reduce search points. Enhanced hexagonal search
(EHS) [10] was proposed to improve the inner search speed
by saving at least one point from calculating BME against
the original HS [9]. By exploiting locally unimodal error
surface assumption (LUESA), EHS groups the inner points
according to six sides of hexagon, and only checks a portion
of inner points with smallest group error. Instead of using
such group-oriented method, an enhanced hexagonal-based
search using point-oriented search (EHS-POIS) was presented
in [11] to optimize the prediction result for each inner point.
It is experimentally proved that EHS-POIS outperforms EHS
on both accuracy and speed.

The remainder of this letter is organized as follows.
In Section II, isoline map is first introduced to illustrate
anisotropy of distortion distribution and three new assumptions
are made for the proposed inner search strategy. The concept
of pseudo-point is developed in Section III, which integrates
direction information into a new inner search strategy. In
Section IV, the proposed enhanced hexagonal-based search
using direction-oriented inner search (EHS-DOIS) is compared
with previous works in terms of prediction process compu-
tation expense. The experimental results and discussion are
presented in Section V, and Section VI concludes this letter.
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II. Anisotropy of Block Matching Error
Distribution

As mentioned previously, EHS [10] predicts distortions
of grouped inner points by calculating group distortions of
hexagon. To optimize the prediction result, EHS-POIS [11]
predicts the distortion for each inner point using neighbor
points. This inspires us to address a question of particular
interest: which neighbor of an inner point should be used for
achieving better prediction performance? First take a closer
look at the distortion distribution in search window. According
to LUESA, the global minimum is always centrally biased.
Since error distributions encode important information for
prediction of individual inner point, spatial variability of direc-
tional anisotropy of error distribution surface is investigated.

Define the average local error surface as matrices

E′ =

(∑N
k=1 Ek

)

N
(1)

E′′ =

∑M
f=1 E′

f

M
(2)

where E = [SAD](2W+1) × (2W+1) is the error matrix including
the sum of absolute difference (SAD) between the predefined
block and all candidates in the search window with the size
of ± W . N is the number of block in a frame, and M

is the number of frame in a video. E′ and E′′ represent
the average local error surface in a frame and a video,
respectively.

In order to explore anisotropy of BME distribution, the error
gradient along directions is exploited to quantify directional
dispersion of BME distribution. Let P be a point in the search
window. Both the origin of a Cartesian coordinate system and
the pole of a polar coordinate system are set on point P . Then
the error gradient along a particular direction θ is defined as

gθ , i =

[
Er(xθ , i, yθ , i) − Er(xθ , i−1, yθ , i−1)

]

�ρθ

(3)

where θ is the angle in polar coordinates, (xθ , i, yθ , i) and
(xθ , i−1, yθ , i−1) are Cartesian coordinates of two points along
the same direction θ with radius increment �ρθ , i =
1, 2, . . . , H , H is the number of explored points along the
direction θ, (xθ ,0, yθ ,0) is Cartesian coordinates of P , and
Er(xθ , i, yθ , i) is BME of point (xθ , i, yθ , i). In fact, xθ , i =
xθ , i−1 + �ρθ · cos θ and yθ , i = yθ , i−1 + �ρθ · sin θ. Hence,
the average error gradient along direction θ is defined as

gθ =

∑H
i=1 gθ , i

H
. (4)

Considering different directions, the mean value and the
variance of gθ can be calculated with (5) and (6)

ḡ =

∑
θ gθ

Z
(5)

V =

∑
θ (gθ − ḡ)2

Z
(6)

Fig. 1. Directional distribution of distortion in ±16 search window. (a) Error
surface for a frame. (b) Isoline map for a frame.

Fig. 2. Error isoline maps of different frames and videos. (a)–(g) Error
isoline maps of a singular frame in video Container, Foreman, Mobile, News,
Paris, Silent, and Tempete, respectively. (h)–(n) Error isoline maps of seven
200-frame videos, respectively.

where Z is the number of different directions investigated. The
directional dispersion of BME distribution A can be defined
as (7). Generally, higher A indicates stronger anisotropy

A =
V

ḡ
. (7)

Based on the developed concept, statistical analysis is con-
ducted. The testing set up consists of seven videos (Container,
Foreman, Mobile, News, Paris, Silent, and Tempete), in which
200 frames per video are used. In each frame, 7 × 7 nonover-
lapping blocks are selected, which are uniformly scattered over
the whole image with the same interval along horizontal and
vertical lines. The size of block and search window are 16 × 16
and ±16, respectively. Therefore, a frame in each video is used
for calculating E′, and 200 frames are used for E′′. The center
of search window is chosen as the origin P , and θ is limited
to eight directions: {0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4}.
When θ = π

/
4, 3π

/
4, 5π

/
4, 7π

/
4, �ρθ =

√
2; �ρθ = 1, if

θ = 0, π
/

2, π, 3π
/

2. For (4), H is 16, and the average local
error surface E′′ is used as Er.

In the video Container, the distribution of E′ is shown both
as surface in Fig. 1(a) and isoline map (contour) in Fig. 1(b).
Obviously in 3-D plot of error distribution, a valley along
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TABLE I

Directional Dispersion Of BME Distribution

Video A = V/ḡ

Container 13.98
Foreman 13.76
Mobile 7.94
News 2.67
Paris 0.91
Silent 8.87
Tempete 10.27

the x-axis is easily spotted. By observing the contour, it is
interesting to note that error values are not equally distributed
in all directions. To rephrase the fact, the error distribution is
not isotropic (i.e., conically symmetric distribution). As Fig. 2
shows, comparing E′ and E′′, it is amazing distribution shapes
for E′ and E′′ are extremely similar. Hence, BME distribution
is undoubtedly anisotropic, and the correlation between BME
and spatial direction remains along the time line and is an
inherent property in any given video.

Specifically, in Table I and Fig. 2, the error in the videos
Container, Foreman, and Tempete increases more slowly along
the x-axis. Correspondently, the values of A are relative high.
In the videos News and Paris, error increases uniformly along
almost eight directions, so the values of A are low. The
nonzero value of A infers that the distribution of BME is
correlated with spatial direction. If A = 0, the error surface
is conical and isolines are circular. Table I quantitively vali-
dates the anisotropy of error distribution. It further confirms
nonuniformities of each direction’s importance for prediction
contribution.

Derived from the above statistical analysis, three assump-
tions are concluded.

1) The distribution of BME is inherently correlated with
spatial direction.

2) The correlation between BME and spatial direction is
an inherent property along the time line.

3) The assumption that the SAD difference is approxi-
mately linearly proportional to the distance (less than
two pixels) in [11] is enhanced here. BME is related
with not only distance but also direction. BME in-
creases linearly along different directions within two
pixels. Error along different directions is nonuniformly
distributed.

III. Direction-Oriented Inner Search Strategy
for HS

As previously described, the distribution of block matching
error is anisotropic to various extent, and eight inner points are
inherently around center point of coarse search pattern (CSP),
representing eight directions. Consequently, by utilizing the
spatial direction information for inner search strategy, the
concept of pseudo-points located in eight different directions is
introduced to correspond to eight inner points, and then a new
direction-oriented inner search scheme is developed for HS.

Fig. 3. Novel hexagonal-based search patterns based on direction-oriented
inner search. (a) Coarse search pattern (CSP). (b) Pseudo-points prediction
pattern (PPPP), in which distortion along eight directions would be predicted
through eight pseudo-points: {A, B, C, D, E, F, G, H}, and eight directions
are represented by eight arrows. (c) Inner point prediction pattern (IPPP), in
which a point in {a, b, c, d, e, f, g, h} would be selected on the arrow from
the center of CSP to the pseudo-point with minimal distortion among eight
pseudo-points.

Fig. 4. Prediction Strategies used by EHS and EHS-POIS. (a) Group-
oriented prediction of EHS. (b) Point-oriented prediction of EHS-POIS.

It consists of two patterns. The first is called pseudo-points
prediction patterns (PPPP). As Fig. 3 shows, eight pseudo-
points {A, B, C, D, E, F, G, H} are added to the coarse
search pattern (CSP) for predicting distortion along eight
directions represented by eight arrows. Actually the point “B”
and “4” is the same point, so is the point “D” and “1,” hence,
their BME need not to be calculated. The distortion of other
six pseudo-points can be estimated by using the following
formula:

2∑
i=1

BMEi√
(xp − xi)2 + (yp − yi)2

(8)

where BMEi represents BME of two nearest points with
coordinates(xi, yi), i = 1, 2, of a particular pseudo-point
(xp, yp). Taking “A” as an example, the predicted BME of
“A” is gained by summing up the normalized BME of two
neighbor points “2” and “3” using formula (8).
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The second pattern is named inner point prediction pattern
(IPPP). In Fig. 3(c), corresponding to the pseudo-point with
minimal distortion among eight pseudo-points, only one point
in {a, b, c, d, e, f, g, h} is selected, and its BME will be
calculated and compared with the center point “0” of CSP.
The one with smaller BME is the best matching point,
e.g., if “A” has minimum distortion among eight pseudo-
points, the best matching point is the one with min(BMEa,

BME0).
The above proposed algorithm is named enhanced

hexagonal-based search using direction-oriented inner search
(EHS-DOIS), summarized as follows.

Step 1: The CSP, shown in Fig. 3(a), is located on
the center of a search window. If the point with
the smallest BME is found to be the center of
CSP, proceed to Step 2; otherwise, CSP will shift
continually until the smallest BME occurs at the
center of CSP.
Step 2: BME of eight pseudo-points, as Fig. 3(b)
shows, are predicted through six vertex points in CSP
using formula (8). Note that “B” and “D” need not
to be predicted.
Step 3: The corresponding point in {a, b, c, d, e,

f, g, h}, shown in Fig. 3(c), will be selected based
on the minimal distortion among BME of eight
pseudo-points in Step 2.
Step 4: Calculate the BME of the selected point in
Step 3, and comparing it with the center of CSP, the
one with smaller BME is the best matching point.

IV. Computation Comparison of Prediction

In this section, the prediction computation expense of con-
cerned algorithms is compared with each other. As shown in
Fig. 4(a), EHS [10] groups the six vertexes of the hexagon
and accordingly assign eight inner points to candidate group.
By comparing the group distortions, it locates the group who
is most likely to have inner point with minimal distortion. For
example, the sum of distortions of “2” and “3” are used to
predict Group 2 (including inner points “e,” “a,” and “f ”),
and the sum of distortions of “3” and “4” to predict Group 3
(including “f ” and “b”). Hence, in a block matching process,
EHS only needs six additions for prediction. By utilizing
point-oriented inner search strategy, EHS-POIS [11] predicts
the distortion for eight inner points using the “normalized
group distortion (NGD)” [11] as follows:

NGD =
N∑
i=1

SADi

di

=
N∑
i=1

SADi√
(xi − x)2 + (yi − y)2

(9)

where SADi represents SAD of two or three nearest points
(xi, yi) of a particular inner point (x, y). For example, “0”,
“2”, and “3” are used to predict the distortion of “a”, and “0”
and “4” are used to predict the distortion of “b”.

It is easy to discover that (8) and (9) are strikingly similar.
However the slight difference between is the key to speed up
inner search. There are only two neighbors used to predict an

TABLE II

Operations of a Block Matching Process of Different

Algorithms

Operation EHS EHS-POIS EHS-DOIS
Addition 6 14 6
P-Operation 0 22 12

TABLE III

Speed Improvement Rate (%) Over HS

Video EHS EHS-POIS EHS-DOIS
Container 17.11 18.17 27.25
Foreman 14.36 15.90 23.85
Mobile 15.37 16.52 24.77
News 15.10 17.92 26.88
Paris 15.03 17.16 25.73
Silent 15.53 17.40 26.09
Tempete 15.91 16.99 25.48

TABLE IV

Average Psnr Per Frame

Video HS EHS EHS-POIS EHS-DOIS
Container 33.3370 33.3369 33.3368 33.3368
Foreman 28.4870 27.9503 27.3989 28.0643
Mobile 24.1340 23.9793 24.0089 24.0161
News 31.3509 31.1460 31.1420 31.1485
Paris 28.0350 27.9037 27.9191 27.9256
Silent 31.1725 31.1146 31.1220 31.1422
Tempete 27.6590 27.5830 27.5121 27.5211

individual inner point in (8), but two or mostly three neighbors
are used to predict an inner point in (9). In addition, only six
pseudo-points need to be calculated for EHS-DOIS, instead,
EHS-POIS need to calculate NGD eight times.

The two formulas can be integrated as

M∑
i=1

Distortioni

EuclideanDistancei

. (10)

When it comes to EHS-DOIS, M is definite two. As far
as EHS-POIS is concerned, M is two or mostly three. For
comparison reason, P-Operation is defined as

Distortion

EuclideanDistance
. (11)

The number of operations used by different algorithms is
listed in Table II. Obviously, EHS has the lowest computation
for prediction, and EHS-DOIS has less computation expense
than EHS-POIS in terms of both addition operation and
P-Operation.

The prediction computation expense of above algorithms is
certainly less than calculating one real distortion. The degree
of search speedup mainly depends on the number of checked
inner points. Only one inner point needs to be checked by
EHS-DOIS constantly. This implies that the proposed inner
search theoretically has the faster search ability than previous
works.
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V. Experimental Results and Discussion

To evaluate the proposed EHS-DOIS, experiments are con-
ducted to compare HS [9], EHS [10], EHS-POIS [11], and
EHS-DOIS in terms of two testing criteria: speed and image
quality. For speed comparison, the speed improvement rate
(SIR) is introduced: SIR = (NHS − NAlgorithm)

/
NHS, which

reflects the speedup percentage of a particular algorithm
relative to HS, where N denotes the total number of points
checked by different algorithms. As for image quality, average
the peak signal-to-noise ratio (PSNR) per frame is used. HS,
EHS, EHS-POIS, and EHS-DOIS are implemented using C++,
referring to [14]–[16]. The experiment codes guarantee that
none of all algorithms gets any unfair advantage. The setup is
as follows: the mentioned seven videos, 106 successive frames
per video, block size of 16 × 16, search window size of ±16,
SAD used.

Note that four algorithms have the same coarse search
pattern (CSP), so the number of checked points of CSP is the
same. Therefore, the speedup totally depends on the number
of checked inner points. From Table III, it is observed that the
SIR of EHS, EHS-POIS, and EHS-DOIS is higher than that
of HS. The SIR change of EHS-DOIS is around 23.85% to
27.25%, while that of EHS-POIS and EHS are around 15.90%
to 18.17% and around 14.36% to 17.11%, respectively, which
are significantly lower than that of the proposed algorithm. It
is safe to conclude that EHS-DOIS is the fastest one.

From Table IV, in Container which contains little mo-
tion, EHS-DOIS and EHS-POIS yield 0.002 PSNR decrease
compared with HS, and EHS gains 0.001 PSNR increase
over the two algorithms. When it comes to News, Paris,
and Silent, which contain relatively large motion, EHS-DOIS
attains a higher PSNR than both EHS and EHS-POIS. As
far as camera panning is concerned, like in Foreman, EHS-
DOIS yields 0.114 and 0.665 PSNR increase over EHS
and EHS-POIS, respectively. When camera zooming and
camera panning are both involved in Mobile and Tempete,
EHS-DOIS yields better image quality in some cases. It
is obvious that HS yields the highest PSNR in the seven
videos. What reason makes HS work so well? Note that
HS [9] calculates the real distortions of four inner points
“a,” “b,” “c,” “d” which distribute along four directions on
vertical and horizontal lines. Hence, HS can effectively escape
away from a local minimum point. However, EHS-DOIS is
able to make the best tradeoff between speed and image
quality.

In summary, as far as speed is concerned, EHS-DOIS is
undoubtedly the fastest algorithm. In terms of image quality,
EHS-DOIS outperforms EHS and EHS-POIS in most cases.
The experimental results justify that the proposed direction-
oriented inner search is profitable for the hexagon-based
search.

VI. Conclusion

In this letter, a new fast inner search was developed to
speed up the hexagon search, based on spatial information
and anisotropy of error distribution. Isoline map and quan-
titive analysis on anisotropy were first used to visualize and

investigate the error distribution. Three new assumptions about
error distribution were concluded for the developed concept
of pseudo-point, which integrates direction information into
a new inner search strategy. Applying this new strategy, an
EHS-DOIS was proposed to speed up HS. Like EHS and
EHS-POIS, EHS-DOIS makes its best attempts to reduce the
number of checked inner points within hexagon, with its merit
of checking only one inner point. Experimental results showed
EHS-DOIS gains more speedup than EHS and EHS-POIS, and
as compared with previous works, it also outperforms EHS and
EHS-POIS in most cases with regard to image quality.
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